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Abstract

A multivariate ensemble Kalman filter (MVENKF) implemented on a massvely paral el
computer architedure has been implemented for the Poseidon ocean circulation model
and tested with a Pacific Basin modedl configuration. There are about two million
prognostic state-vedor variables. Parallelism for the data assmilation step is achieved
by regionalization of the background-error covariances that are cdculated from the
phase-space distribution of the ensemble. Each processng element (PE) colleds
elements of a matrix measurement functional from neaby PEs. To avoid the
introduction of spurious long-range @variances asociated with finite ensemble sizes,
the background-error covariances are given compact support by means of a Hadamard
(element by element) product with athreedimensiona canonicd correlation function.

The methodology and the MVEnKF configuration are discussd. It is diown that the
regionali zation of the background covariances has a negligible impact on the quality of
the analyses. The pardlée agorithm is very efficient for large numbers of observations
but does not scale well beyond 100 PEs at the aurrent model resolution. On a platform
with dstributed memory, memory rather than speed istheli miting factor.
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1 Introduction

1.1  Background and motivation

This report summarizes the progress made by the NASA Seasonal-to-Interannual Prediction
Projed (NSIPP) at the Goddard SpaceFlight Center in its use of a multivariate ensemble Kalman
filter (MVENKF) to assimilate observations into the Poseidon isopycnal ocean general circulation
model (OGCM) (Schopf and Loughe 199%; Konchady et al. 1998 Yang et al. 1999. NSIPP
uses a oupled oceavland/atmosphere/ice model to produce forecasts of El Nifio and its global
teleconnedions. The oupled model’s components are Poseidon, the NSIPP-1 atmospheric
general circulation model (AGCM) (Suarez and Takacs 1995 Schaffer and Suarez 1998
Bacmeister and Suarez 2001), the Mosaic land-surface model (Koster and Suarez 1996 and a
thermodynamic seaice model. A CRAY T3E is used for ensemble integrations of the parallel
versions of the ocean, amosphere and land models.

At present, a univariate form of optimal interpolation (univariate Ol: UOI) is used for the ocean
analyses resulting in the initial ocean state for the coupled forecats. The UOI processes
temperature measurements from the Tropical Ocean and Atmosphere (TAO, e.g., McPhaden et
al. 1998 array in the Tropica Pacific Ocean. Like several other ocean data asimilation systems
currently in use & other ingtitutions (e.g., J and Leema 1997), it is based on the asumption that
the forecast-error covariances are gproximately Gaussian and that the cvariances between the
temperature-field errors and the salinity-field and current-field errors are negligible.

Largely due to the high-resolution coverage and acaracy of the TAO measurements, the UOI
appeas to be dfedive in improving surfaceand sub-surface temperature field estimates in the
equatorial region in comparison with the estimates obtained without temperature assimilation.
As a result, the introduction of the UOI into the coupled forecasting system has resulted in
significant improvements in the cupled model’ s hindcast skill of Nifio-3 temperature anomalies.

The UOI has the alvantage of being inexpensive in terms of computing resources. Its other main
advantage is that it was relatively easy to implement within the framework of the parallel
OGCM. Nevertheless, the UOI suffers from threemajor shortcomings. The first shortcoming is
that it can only be used to assimilate measurements of a model prognostic variable. The second
shortcoming is that it does not use any statistical information about the expeded inhomogeneous
distribution of model errors. The third shortcoming is that it is based on a stealy state error-
covariance model which gives the same weight to a unit innovation regardless of how acarate
the ocean-state estimate has become & a result of previous analyses. Diredly linked to this
shortcoming is the failure to provide time-dependent estimates of the model errors.

In response to the first two shortcomings, a parallel multivariate Ol (MvOI) system has been
implemented. The MvOI uses gealy state estimates of the model-error satistics computed from
ensemble runs of the OGCM in the presence of stochastic amospheric forcing fields. Yet, the
MvOI cannot adjust to dynamically evolving error statistics. The development of a parallel
MVENKF has been undertaken to addressthis shortcoming.



1.2 Overview of the ensemble Kalman filter

Although the Kalman filter (Kalman 1960 and its generalization to nonlinea systems, the
extended Kalman filter, are statistically optimal sequential estimation procedures that minimize
error variance (Daley 1991; Ghil and Malanotte-Rizzoli 1991, Bennett 1992 Robinson et al.
1998, they cannot be used in the mntext of a high-resolution ocea or amospheric model
because of the prohibitive ast of time stepping the model-error covariance matrix when the
model has more than a few thousand state variables. Therefore, reduced-rank (e.g., Cane et al.
1996 Verlaan and Heemink 1997 and asymptotic (e.g., Fukumori and Malanotte-Rizzoli 1995
Kaman filters have been proposed. Evensen (1994 introduced the ensemble Kalman filter
(EnKF) as a Monte Carlo-based alternative to the traditional Kalman filter. In the EnKF, an
ensemble of model trajedories is integrated and the statistics of the ensemble ae used to
estimate the model errors. Closely related to the EnKF are the singular evolutive extended
Kaman filter (Pham et al. 1998 and the eror-subspace statistical estimation algorithms
described in Lermusiaux and Robinson (1999.

Evensen (1994 compared the EnKF to the extended Kalman filter in twin asgmilation
experiments involving a two-layer quasigeostrophic (QG) ocean model on a square 17 x 17
grid. Evensen and van Leeauwen (1996 used the EnKF to processGEOSAT altimeter datainto a
two-layer, regional QG model of the Agulhas current ona51 x 65 grid.

Houtekamer and Mitchell (1998 introduced a version of the EnKF in which two ensembles are
integrated and—in order to maintain a representative ensemble spread when the model is
asuumed perfect—the statistics of each ensemble ae used to updhte the other. They tested this
algorithm in identical-twin experiments involving a threelevel, spectral QG model at triangular
truncaion T21. In Mitchell and Houtekamer (2000, smulated radiosonde profiles were
assimilated into the same model using an EnKF algorithm involving parameterized model errors.

Keppenne (200Q hereafter KOO) conducted twin experiments with a parallel MvEnNKF algorithm
in the context of an imperfed model and parameterized model errors. The algorithm was applied
to the assimilation of synthetic altimetry measurements into a two-layer, spedral, T100 primitive
equation model. The state-vedor size was small enough in this applicaion to justify a
parallelizaion scheme in which each ensemble member resides in the memory of a separate
CRAY T3E processor (hereafter processing element: PE). To paralelize the analysis, KOO's
algorithm transposes the ensemble acoss PEs a analysis time, so that ead PE ends up
processing data from a sub-region of the model domain. The influence of each observation is
weighted acording to the distance between that observation and the center of eat PE region.

To filter out noise aociated with small ensemble sizes, Houtekamer and Mitchell (2007)
developed a parallel EnKF analysis algorithm that applies a Hadamard (element by element)
product (e.g., Horn and Johnson 1991) of a crrelation function having local compad support
with the badground-error covariances. They tested this analysis s£heme on a 128 x 64
Gaussian grid corresponding to athreelevel QG model using randomly generated ensembles of
first-guessfields computed ahead of time, rather than a dynamicdly evolving ensemble of model
trgjedories. The benefits of constraining the cvariances between ensemble members using a



Hadamard product with a locally supported correlation function has also been investigated by
Hamill and Snyder (2000 in the context of an intermediate QG atmospheric model.

In this paper, we build upon the @ntributions made by each of the above-mentioned studies to
implement a parallel MVENnKF for the Poseidon OGCM. Initial tests are undertaken with a 20-
layer, Pacific basin configuration of the model with about two million state variables. The
system noise is acounted for in a manner similar to that used in KOO, by including a stochastic
component in the forcing fields. Following Houtekamer and Mitchell (2000, the badkground-
error covariances are multiplied element-by-element by an idealized threedimensional
compadly supported correlation function.

1.3  Organization of thefollowing Sedions

The remainder of this paper is concerned with describing the parallel MVENKF implementation
for the Poseidon model. The model is briefly discussed in Sedion 2 and the algorithms are
presented in Sedion 3 where the focus is on the apeds of this EnKF implementation that differ
from other implementations. To ill ustrate the plausibility of using the MVENKF in an operational
framework, some timing numbers are given in Sedion 4. The scalability of the algorithms and
the dfed of distributing the analysis calculations between PEs are dso discussed in Sedion 4.
Sedion 5 contains a summary. In a cmpanion article (Keppenne and Rieneder 2001, hereafter
KRO1), the parallel MVENKF is validated in the context of TAO-temperature and TOPEX-
altimeter data assimilation and is compared with the UOI presently used quesi-operationally at
NSIPP.

2 The Poseidon parallel ocean model

2.1 Model summary

The Poseidon model (Schopf and Loughe, 1995 is a finite-difference reduced-gravity ocean
model which uses a generalized vertical coordinate designed to represent a turbulent, well-mixed
surface layer and nealy isopycnal deeper layers. Coastal topography is represented, but the
reduced-gravity treagment predudes the use of variable bottom depth. Poseidon has been
documented and validated in hindcast studies of El Nifio (Schopf and Loughe 1995 and has
since been upckted to include prognostic salinity (e.g., Yang et al. 1999. More recettly, the
model has been used in an investigation of the annual cycle in the eatern Equatorial Pacific (Yu
et al. 1997 and in anumerical study of the surface hea balance along the eguator (Borovikov et
al. 200J).

Poseidon’s prognostic variables are layer thickness h(A, 6, {, t), temperature, T(A, 6, {, 1),
salinity, §A, 6,(,t), and the zonal and meridional current components, u(A, 6, ¢,t) and
V(A, 6, (, 1), where A is longitude, @ latitude, t time and {is a generalized vertical coordinate
which is 0 at the surfaceand increments by 1 between successive layer interfaces.



Explicit detail of the model, its vertical coordinate representation and its discretizaion are
provided in Schopf and Loughe (1995 and are only summarized here. The ejuation for mass
continuity is

oh
ot

=0, @

where [. and v are the two-dimensional (2D) divergence operator and velocity vedor and we
represents the volume flux aaosslayer interfaces, including freshwater flux through the surface

The heat equation is

ohT ow,T _ 0 0Q
" +0.(vhT) + o0 Y E“r +hF, (T), (2

where Q isthe external hea flux, k is a hea diffusivity and Fy, is a 2D smoothing operator. The
salinity equation is

ohS ow,S
6_t+D( vhS) + 5 azg— %hF (S), 3

where ks isa salinity diffusivity. The 2D momentum equation is

OV 1 vhw) + 2o M iz — fkoxy +—Eé % L 9T vk (), (4)
ot 0l o
where v is a vertical friction, 7 is the vertical shea stress f kxv is the Coriolis aceleration and

Fv isadissipation term. A hydrostatic Boussinesq approximation is made, whereby p'(z) isthe

pressure anomaly at depth z, b is buoyancy and p, is the mean density. The hydrostatic equation
then becomes

0
P - —pbh. 5)

Following Pacarowski and Philander (1981), vertical mixing is parameterized through a
Richardson number-dependent mixing scheme implemented implicitly. An explicit mixed layer
isincluded with a mixed layer entrainment parameterization following Niiler and Kraus (1977).

A time-splitting integration scheme is used whereby the hydrodynamics are done with a short
time step (15 minutes), but the vertical diffusion, convedive aljustment and filtering are done
with coarser time resolution (half-daily).



2.2 Modd setup

The version of Poseidon used here has been parallelized as in Konchady et al. (1998) using the
same message-passing protocol and 2D horizontal domain decomposition used by Schaffer and
Suarez (1998 for the AGCM.

The experiments described in this article use a20-layer Pacific basin version of the parallel
model with uniform 1° zonal resolution. The meridional resolution varies between 1/3° at the
equator and 1° in the extratropics. A solid boundary is imposed at 45° south. There, a no-slip
condition is used for the aurrents and a no-flux condition is used for mass heat and salinity. The
issue of the forcing is discussed in Sedion 3.12.

140 160 180 200 220 240 260 280

Figure 1. Horizonta domain deamposition for the Pacific model. The thin lines delineate grid cdls. The thick

lines correspond to the boundaries of each PE bax on the 16 x 16 PE lattice Each dark circle correspondsto a TAO
moaring.



There ae 173x 164 x 20 grid boxes, of which 28% are situated over land, resulting in a total of
2.0422x 10 individual prognostic variables. A 16 x 16 PE lattice is used as shown in Figure 1.
The PEs locaed over land are virtual PEs which do not take part in the ensemble integrations
and analyses.

Figure 2 illustrates the horizontal setup for one PE box. Locally within the box, the grid cells are
numbered 1<i<|, zonally and 1< j <J, meridionally, from the box’s lower-left, southwest
corner. In order to minimize the communication overhea in the horizontal differencing of the
model equations, the PE boxes overlap. The overlapping regions, called halo regions, have
width i; — 1 to the West, | —i, to the Eadt, j; — 1 to the South and J —j, to the North. The PE-
private regions are thus defined by i, <i<i, and j, < j<],. Verticaly within each grid cell,
the grid boxes are numbered 1<k < K.

1,J 1J

in,j2 iz,J2|

inji izf1

1,1 11

Figure 2. Schematic setup for one PE. The halo regions are @lored gray. Thethin lines delineate grid cdls. The
thick lines delimit the halo regions and PE boundaries. Inthisexample, | =J=9,i; =j; =3andi, =j, = 7.

3 Assamilation methodology

3.1 Horizontal domain decomposition

In KOO, the number of model state variables, 2.7 x 10°, was snall enough to integrate eath
ensemble member on a separate PE. AcrossPE transpositions of the ensemble were used to
conduct the analyses in parallel (Fig. 1 in KOO). After each transposition, ead PE contained the
state-vedor elements of every ensemble member that correspond to a sub-region of the model
domain, rather than the ettire state of a single ensemble member as it did before the
transposition. Local badkground covariances were @wmputed on every PE from the local
ensemble distribution and were then used to cdculate the analysis increments.

An advantage of K0O's algorithm is that both the eror-covariance forecasting step (ensemble
integration) and the analysis gep occur in parallel, although the model itself is coded serialy.



Y et, there ae two obvious disadvantages to this £heme. First, it can only be used if each copy
of the model can fit in the memory of a single PE. This precludes using this algorithm with a
high-resolution GCM on most massvely parallel procesors (MPPs) with distributed memory.
On such computer architedures, the memory of each PE is usually insufficient to contain the
entire state vedor of a GCM. Second, the ensemble transpositions aaoss PEs involve a
significant communication overhead.

Since the version of Poseidon used here is parallelized, the same domain decomposition used to
run the model can be used in the analyses, provided the badground error-covariance matrix,
P', islocally approximated. This simplification avoids costly ensemble transpositions aaoss
PEs. Thus, the ensemble is distributed so that the memory of each PE contains the same
elements of each ensemble member’s gate vedor. These elements correspond to every variable
contained within the PE boxes illustrated in Figure 2. This decomposition is used for the
ensemble integrations as well as for the analyses.

3.2  Asgmilation on geopotential surfaces

The temperature measurements from each TAO mooring are recorded at specific depths which
are fairly consistent between moorings. Since Poseidon uses an isopycnal vertical coordinate,
the model fields must be interpolated to the latitude, longitude and depth of ead observation.
With the MVENKF, the elements of P" can be alculated in the (A, 8, {) coordinate system and
the analysis can occur on isopycnals, whereby the vertical interpolation can be made part of the
measurement functional (Sedion 3.9). To the mntrary, when the UOI was implemented, the
choice was made to treat the temperature observations in the usual (A, 6, z) coordinate system in
light of the asence of corresponding salinity observations. Thus, to maintain compatibil ity with
the UOI which interpolates model fields vertically to a series of pre-specified depths (hereafter
levels) prior to eat analysis, the same gproac is used here and the background covariances are
calculated on levels rather than on layers'. Therefore, the T, S uand v fields are mnverted from
isopycnals to levels and the analysis increments are cdculated on the levels before being mapped
bad to the isopycnals. Sixteen levels are used in KRO1.

The @ove scheme resultsinonly T, S u and v being updited. The layer thicknesses, h, are left
unchanged by the assimilation. Rather, the procedure alows the model to dynamically
recalculate h from to the new density distribution and the target interfacebuoyancies, as it does
at every time step (see Schopf and Loughe 1995. Thus, the dedsion rot to cdculate h
increments is deliberate. Rather, the incremental update mecdhanism discussed in Sedion 3.8 lets
the model dynamically adjust the layer thicknesses using the information contained inthe T, S u
and v increments.

Sinceonly the layer-average value of T, S u and v in each grid box (i, j, |) appea in the model
equations, the mapping from isopycnals to levels could be made by assgning to a given field at
(Aij, 8;, ) .the value of the same field at (A;;, 8;, 1). However, if the mapping were performed in
this manner, ambiguities would arise when several levels pass through the same layer at (A, 6;).

! Thelatest version of the NSIPP ocean data assmilation code implemented after running the experiments discussed
in this study alows the user to choose between mapping the model date to levels prior to each anaysis or
conducting the assmilation on the quasi-isopycnal |ayers.



A possible mnsequence is the singularity of the analysis equations of Sedion 3.6 in the (A, 6, 2)
coordinate system. To avoid this problem, the mapping is made & though the vertical variations
of the field were piecevise linea, with the discontinuities in the slope occurring in the middle of
the layers. Thisisillustrated in Figure 3 for the temperature field.
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Fig.ure 3. Mapping of the model temperature field to a spedfied level, z= z. W.ithin the current grid cdl, z is
contained between the layer interfaces (=1 and {=1+1. In the mode discretization, only the layer-average
temperature matters. Yet, to avoid ambiguities when more than one spedfied level passthrough the same layer in
the grid cdl, thefield isinterpolated linearly as shown.

3.3 Ensemblesize

With the MVENKF, PE memory imposes constraints on both the domain decomposition and the
ensemble size With the usual compromise between parallelism and communication, the Pacific
basin version of Poseidon is typicaly run on 64 PEs. The godl is for the MVENKF runs to be
done on a few times as many PES. In this gudy, 256 PEs are used and the memory available on
these PEs imposes a limit of about 40 ensemble members. Encouraging results have been
obtained with comparably sized ensembles by Mitchell and Houtekamer (2000 with a three
level QG model and by KOO with a two-layer shallow water model. Moreover, a common
objedive of ocean and atmospheric modelers when they gain access to more powerful computer
systems is to increase their model resolution. Therefore, it is nsible to exped that the largest
ensembles of GCMs that one will be able to run concurrently on a single MPP will generally
remain on the order of a few tens. In order to demonstrate that the MVEnKF can be used in a
quasi-operational setting with a high-resolution GCM, one thus has to show that it can perform
as well as the simpler methods currently in use & most centers, even with as few as 40 ensemble
members.



3.4  Compactly supported covariances

The small ensemble size @nsidered here introduces the neal to filter out spurious long-range
correlations when the badkground covariances are computed. Following Houtekamer and
Mitchell (2000 and a suggestion by Gaspari and Cohn (1999, this filtering is achieved through
a Hadamard product (i.e. A+ B such that {A« B}, = A B,) of the eror-covariance matrices

with a local compadly supported correlation function.

The cmpactly supported correlation function is the product of a horizontal correlation function,
Cn(r*?), 1™ =[(A2- Ay + (8- B)%14°°, and a verticad correlation function, C,(r*?),
r'? = |z - z|/l, where (A, 8, z) are the wordinates of point i. In this gudy, C, =C, =C,,
where C, is defined by (4.10) of Gaspari and Cohn (1999. The normalization is such that
C,(r)=0, r=2. The orrelation scaesarel, = 3, | =15 and |, = 500m for the asimilation

of TAO temperature data. These scales are slightly broader than those used to define the
univariate idedized correlation function employed in the UOI. When gridded TOPEX altimeter
data ae assimilated, [, = 15° and g = 7.5° These shorter correlation scales give better results
than longer ones given the high horizontal coverage of the altimeter data.

N

hS]

Figure 4. Domain decomposition for the analysis. The outer redangle delimits the aea A, from which the data
assmil ated on one PE are mlleded. The innermost redangle depicts the boundary of the PE-private aea (grid cdls

(i,j) with I; i1 <i,, ], <]<],), B The dlipse deimits the influence region, £ of the PE-private aea’s
southeastern corner cdl, (iz, j1). The shaded area ontains the dlipses, £, for all grid cdls, (i, j), contained in B.
Theregion Ccontainsall the PE'sgridcdls(1<i1 <1, 1< j<J),incudingthe hao regions.

3.5 Confined analysis

Although the TAO temperature data asimilated here ae sufficiently few (about 600 at ead
analysis) for eat PE to processthem all, an approadch whereby each PE processes data from a
sub-region of the model domain is used. Besides the obvious efficiency gain in a parallel
environment, another justification for this approadc is that the compadly supported badkground
covariances result in the data that diredly (i.e., through the measurement functional of Sedion
3.8) influence the state variables within each grid cell being contained within an ellipse with
semi axes 21, and 2y . Taking advantage of this fad, the region from which the observations



assimilated on ead PE are wmllected is chosen to be the smallest rectangle, with sides Az -
Aigjr + 4l and B4j2 - B4j1 + 4lg, containing all the ellipses that correspond to the PE-private grid
cellsof thisPE. Thisisillustrated in Figure 4.

3.6  Analysisequations

Without the Hadamard product of the badkground-error covariances with the cmpactly
supported correlation function, the EnKF analysis equations can be written as

=2(x' -(x)"), (6a)
l—L(y <>) L(x), (@
Y={yp Vb Ll esloh

LU +wlh =d-L(y+(x))+e, (&)
X'=x'+YL'h.  (&d)

In (6) and throughout this discusgon, uppercase boldfacesymbols represent matrices, lowercase
boldfacesymbols represent vedors and lowercase regular (i.e., not bold) symbols denote scalar
variables. Boldfacesubscripts, such asin x,, identify the ith instance of the x vedor. Regular
subscripts identify array elements. The vedor, d (ng x 1) contains ng observations, x; (ny x 1),
1 <i <m, istheith ensemble state vedor and m stands for the ensemble size  The superscripts
and ' refer to the analyzed state and the forecast, respectively, = is a smoothing operator (Section
3.11) and < > denotes an ensemble average. The vedors y, (nx x 1) and I, (ng x 1) are columns
of the matrices Y (nx x m) and L (ng x m) respedively, and L(x)is a measurement functional

which relates the state vedor to the observations (Sedion 3.9). Matrix W (ng X ng) is the
measurement-error covariance matrix. The representer matrix, R = L L', maps the badground-

error covariance matrix, P ' (nx % ny), to the aror subspaceof the measurements. The elements
of b ,are the representer-function amplitudes used to updie x,. The ngx1 vedor,

z =d-L(y, +<x>f)+q, contains the innovations with resped to the ith ensemble member. Prior to
their calculation, = is applied to smooth x;. Following Burgers et al. (1999, e, is a random
perturbation chosen such that (e ) =0 and <ei eiT> =W . lItsrole is to maintain the influence of

observation uncertainty in the eror covariances estimated diredly from the enxsemble so that
these cvariances are onsistent with the theoretical estimates. Its inclusion helps prevent the
ensemble from collapsing resulting in a systematic eror underestimation. The introduction of
this term is crucial to maintain a representative ensemble variance when the matrix norm of W,

W/, is comparable to or greater than |R|, i.e. when the observations are more uncertain than the
model state. The data asimilated here ae relatively accurate, so that W|/|R DO(10™).

When L(x) isalinear functional and = is an identity mapping, (6) simplifiesto
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y=x'-(x", (7
L(y)=Hy, (M)
LL'=HP'H", YL'=P"HT,
[HP"HT+W]h =d-H ' +e, (70)
Xiazxif +Pf HTb’ (7d)
which amounts to applying the usual Kalman filter analysis equations to updite ead ensemble
member in turn.

When the Hadamard products with the compadly supported correlation function are introduced
and when the subscript ranges are explicitly written down, (6c) and (6d) are replaced by

for<psn, 1=gsn): ¢,=6,=C ™) G ™), (8

for<ism): [CeLU +Wp =d-L(y+(X))+e, @)
for(l<ks<n,, 1<psn): n,=GH?) G (™), (80
for@<ism 1<k<n,): % O &)

B =>€ﬁ Y P )

where o refers to the inner product of two vedors and C (ng X ng) is a compadly supported
correlation matrix whose elements are defined by (8a), where the indices p and g refer to the data
W, and Wy, The components of the ng x 1 vedor », defined by (8c) contain idealized correlations

between the (A, 6, 2) coordinates, of grid box k and the cordinates of each measurement. Note
that to simplify the notation only one subscript is used to identify the grid box. The
index,1< k <n,,, thus loops over the three dimensions of the (A, 6, 2) coordinate system. The

mx 1 vedor, y, ={Vy., Y} contains smoothed deviations from the ensemble mean of the

m ensemble state vedorsin the kth grid box. It isthus a single row of matrix Y. Inthe MVENKF
implementation discussed herein, y,, adually has four components, i.e.,

Yik = E({T!S'U’V}ik —{<T>,<S>,<U>,<V>}k).

The mx 1 vedor, p, , contains the weights with which the elements of y, are @mbined in the
kth grid box to updite the ith ensemble member.

With the horizontal domain decomposition discussed in Sedions 3.1 and 35, the ejuations
solved on eat PE during the analysis become

11



¢ _mecryf _J\f
for(l<i<m): %J‘ =00, )

Be=Ly+xH-(xhH, @

for(l< p<n§, 1<qsnf): ca =G, G 0™), 9]
for(i<i <ny: %"-L"(L")r+w"% st (y (X)), (o)

for<p<nf, 1<ks<rt): nkp=q1(rék@)q,(r\fk@)a ©9

aT °
for(l<ism 1sksng,): e oen, on
Bl =Xk + Y i ©9)

In(9), y° identifiesthe part of y, that corresponds to al grid boxes on the aurrent PE including
those contained in the halo regions (areain Figure 4). Likewise, d? denotes the measurements

contained within the 4 region. The local matrices, C, L°and W*, correspond to the global C, L
and W but only acount for the observations contained in d?. Asin (9a), the indicesp and g in

(9c) refer to the pth and gth observations. The measurement functional, £?(Xx), maps the global
state vedor, distributed aaoss PEs, to the elements of d?. With the form of L? considered

herein, the mapping does not necesstate an exchange of information between PEs (Section 3.9).
The smoothing function, =, returns the local elements of the global vector returned by = in

(6).

To updkte the state variables of the ith ensemble member in grid box k, {T, S,u, v}, , the analysis

updste, (9e-g) or (8c-€), involves m matrix-vedor multiplication of L' by b +#, (8d, 9f). If the

state variables were not distributed aaoss PEs, or if the observations allowed to influence the
variables of each grid box were not limited to a sub-region of the entire domain as a result of
imposing compadly supported badkground covariances, these multiplications would be stly.
Y et, for the Poseidon model distributed aaoss256 PES, the number of matrix-vedor products on
each PE drops tom(i, —i, +1)(j, — j, +1) K =3200C, where atypical size of L' is 40x 100
Although these products take up most of the time spent in the analyses, they correspond to a
tolerable fradion of the total cost of the MVEnKF—most of which is asociated with the aror-
covariance forecast (ensemble integration).

The &ove remark illustrates how the paradigm shift from serial algorithms to massive
parallelism ones enables one to conveniently solve problems that can ot be aldressed in a
traditional scientific computing environment consisting in vedor supercomputers. Yet, the
massively parallel solution of a @mplex numerical problem usually requires ad hoc
approximations. The aucial approximation made here is the @nfinement of the analysis
(Sedion 3.5) that results from relying on a cmpactly supported covariance model (Sedion 3.4).
The parallel distribution of the clculations naturaly follows. It is shown in Sedion 4.1 that the
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impad of this approximation on the assimilation incrementsis negligible.
3.7 Incremental analysis

Incremental analysis updating (IAU, e.g., Bloom et al. 1995 is used to insert the analysis
increments, x* —x ", into the model in agradual manner. Namely, the model partial differential

equations (1-4) are replacead with

X s 07X ©)
a T gy e

where F stands for the right hand sides of (1-4) and x(t,)and x'(t,) are the analysis and
forecast at the time, t;, of theith analysis.

Unlike nudging (e.g., Daley 1991), which relaxes the model state toward an analysis, the analysis
increments are inserted as a sate-independent forcing term. The IAU has properties similar to
those of a low-passfilter and can improve observed-minus-forecast statistics with resped to a
non-incremental updating scheme (Bloom et al. 19%).

The IAU is used here for two reasons. First, it lessens the unwanted effeds of intermittent data
assimilation, specifically initialization shocks resulting from imbalances between the model
fields following the dired insertion of the analysis increments. Second, the IAU allows the
model to gradually adjust the h field in response to the T, S u and v increments without violating
the cnstraints imposed by the cntinuity equation (1).

3.8 M easurement functional

The data processed in oceanographic data asimilation are usually current, temperature or
salinity measurements made inside the model domain. Alternatively, the data sometimes
measure an integrated quantity such as sa surface height, hea content or, in awmustic
tomography, travel time.

In the egplicaion discussed here, the measurement functional, L°(x), is simply a 2D
interpolation operator which maps the model temperature field—previously interpolated
vertically to a set of levels which include the depths of the measurements—to the latitude and
longitude of each observation on the gpropriate depth level.

Prior to the interpolation, bisection (e.g., Knuth 1998 is used to find the grid box, (i, j, K),
containing each measurement. Then, quadratic polynomials passng through the grid cell
containing each measurement and the eight grid cdls which border that cdl are used to complete
the mapping. Four polynomials are used per observation (Fig. 5b). Unlike biquadratic splines,
this type of polynomial fitting does not guaranteethe continuity of the first derivative acossgrid
cell boundaries. It is however lesscostly than spline fitting when the observations are scarce or
far apart, asis common in oceaography.
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Each PE performs the interpolation to the locaions of the observations, d?, contained within its
PE-private aea(Fig. 5a). Due to the presence of the halo regions, the horizontal interpolation
can be made without exchanging information between reighboring PEs.

1,J 1,J

i1, j2 i, f2

i1, j1 2,1

11 11

b)

=
=
[

Figure 5. Illustration of horizontal interpolation in measurement functional. (a) Grid cdlsinvolved in interpolation

called for by L% (X). Two cases areillustrated. The white drcles indicate the position of the observations located

inside the unshaded PE-private aea The gray-colored redangles show which grid cdls contain the state-vedor
elements nealed to complete the interpolation. The presence of the halo regions (outer gray areas) saves the
communication cost asociated with requesting information from nearby PEs when the measurements are located
nea the boundary of the PE-private aea (b) Horizontal interpolation mechanism using four quadratic polynomias
for each observation represented by the white drclein grid cdl (i, j).

3.9  Superobsevations

As is common when several measurements are made & the same locaion between successve
analyses, the observations are smoothed temporally. This operation, sometimes referred to as
superobing and introduced by Lorenc (1981), combines the measurements using weights which
deaease exponentially with the time interval between the time, tj + §, of a measurement and
that, tj, of theith analysis:

A A _@
dit)=-51-e ©)* J’w(ti +d)e ©do. @y
-A
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In (11), O is a time scale, d(t)is a superobservation and the w are individual measurements
made between time t, —A and time t; +A. Here ad in KRO1, ©= A=10 days and the
analyses occur every five days (TAO temperature data) or daily (TOPEX altimeter data).

3.10 Prefiltering

The purpose of the smoothing operator, = in (6-9), is to remove spurious short-range cvariances
from the representer matrix, R. These spurious elements result from the limited ensemble size
used to estimate the eror distribution and from associated sampling errors. Spurious long-range
covariances are filtered out by imposing that the covariance functions be compadly supported
(Sedion 3.4).

The operator = relies on a simple one-dimensional recursive (infinite impulse response) filter
which is applied horizontally in each layer to damp small-scale variability prior to calculating L.
The filter equations are

a 1 a 4 -
v, s = x)+ 237, - @-@)yr) (122)
=1y w, o, (%, = %)+ 242, - - @) 2], (120)
1r.. a . b]
y :ﬁ[(l_l)yi +(n=i+1y’|, (12c)

where w. =tan(f.) and 0< f, sg is the aitoff frequency. The filter input and output are x;

and yi, 1<i<n. Note that the term reaursion denotes a spatial reaursion: i is a subscript into
vedory.

Unlike non-reaursive filters ( e.g., a Shapiro filter or a running mean), which have polynomial
response functions, reaursive filters have rational response functions which make it easier to
design afilter with a sharp response (e.g., Hamming 1983.

Threepasses of the filter are used with f, = g . Ead passconsists of applying (12) successively

along the zonal and meridional directions. Prior to the filter’s application, the ensemble mean is
subtraded from each ensemble member’s gate vedor, asindicated in (6a) and (9a).

Before gplying (12), eat PE colleds the state-vedor elements from the PEs which belong to
the same row (zonal application of the filter) or column (meridional application of the filter) of
the PE lattice (Fig. 1). For ead input array X in (12), every PE calculates the eitire aray y and
discards the aray elements it does not need. Because of the latency time associated with each
message, this approad is less costly than letting each PE wait until the downstrean PE has
finished computing its own elements of y and has ®nt the @rresponding end values to the
current PE before gtarting the PE’s own calculations, and so forth. To circumvent memory
limitations, the filtering is applied to the T, s, u and v fields of each ensemble member in turn.
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3.11 System-noise representation

The theory of the Kalman filter (e.g., Gelb, 1974 assumes that the first- and seaond-order
statistics of the unknown errors in the model and external forcing are known. Higher-order
statistics are neglected. Let the evolution of the true state be represented by

g_)'[(:F(X’t)+§(X’t)’ @3

where & combines the model errors and forcing errors, and is commonly known as system noise
or processnoise. As in (11), F is the vedor of right hand sides of (1-4) which includes the
model hydrodynamics, physics and forcing. It is assumed that the model and forcing are

unbiased, i.e. (£(x,t)) =0, and that the € vectors are uncorrelated in time:

<§(Xk'tk)§(xlitl)>:F(inxl)é(tk -t), 14

where the system-noise variance matrix, I, is assumed known. Of course, the unbiased
asumption is rarely corred in pradice Thisis espedally true with ocear models in which the
thermocline layer is usually too diffuse. The latest version of the asimilation code includes an
algorithm, derived from Dee and Da Silva (1998, to esimate axd correct systematic model
errors. The isaue of correding the model bias with the EnKF will be discussed in a separate

paper.

In meteorological and oceanographic data assimilation, the statistics of & are generally unknown
and are the objed of parameterization. Adaptive Kalman filters that smultaneously estimate the
state ad system-noise dtatistics have been developed. However, the prohibitive st of the
adaptive filters has limited their application. Blanchet and Frankignoul (1997 summarize and
compare several adaptive filtering algorithms.

Motivated by the aurrent ladk of information about the model-error statistics, the system-noise is
represented solely by modeling the erors in the surface wind stress and hea flux forcing. A
system-noise representation in which not only the forcing errors but also the model errors are
parameterized is in development.

Because of the focus on seasonal-to-interannual variability, the forcing errors (uncertainties) are
modeled on those time scales, with each ensemble member being forced by a monthly mean
perturbation of the monthly mean basic state. The basic state is the superposition of the
climatological seasonal cycle with interannual anomalies. The dimatology is provided by
Special Sensor Microwave Imager (SSM/I: Atlas et al. 19%) winds and Earth Radiation Budget
Experiment (ERBE) hed flux data. The interannual anomalies are provided by the amospheric
model integrated over observed SST data (Reynolds and Smith 1994). The perturbations applied
are due attirely to internal atmospheric chaos and are generated by starting the amospheric
integration at different times. By using the same SST, ead member of the amospheric
ensemble used to force the ocean ensemble has the same seasonal and interannual phase. The
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spread of the @mospheric ensemble from which the forcing anomalies are derived is meant to be
representative of the uncertainty of the forcing products used to force the model in non-ensemble
runs.

3.12 Inter-procesor communications

All information exchanges between PEs, during the analysis as well as during the eror-
covariance forecast (ensemble integration), use message-passing functions from the Goddard
Earth Modeling System (GEMS, Schaffer and Suarez 1998 library. The GEMS functions
provide ahigh-level, objed oriented interfaceto the CRAY native SHMEM (shared memory)
communicétion library.

The position of each PE on the lattice is gored in the npg X mpe array PE, where npe and meg
are the number of PEs along the znal and meridional diredions, respedively. In this
implementation, Nee = Mpe =16. The total number of PEs is Nee. Every PE has a @mpy of PE.
Some tasks, such as aceessing external files, are always done by the same PE which is referred to
asr oot .

The assimilation algorithm relies mostly on two GEMS functions to exchange information
between PEs. These two functions are mentioned here in template form to smplify the
discussion of Sedion 3.13. The first function, pe_col | ect ( ...), isused to colled data from
either the entire PE array or from the row or column of PE which contains the arrent PE. The
seoond function hal o( ...) updates its array argument in the halo regions of each PE after the
PEs have modified the PE-private part of this array.

3.13 Parallel algorithm

The assimilation algorithm, various aspeds of which were discussd in the precaling Sedions,
contains the following steps which are listed from the point of view of one PE, heredter referred
to asthe aurrent PE. The enumeration of these steps garts after the aurrent PE has obtained the
observations, d?, made within its PE-private region (8 in Fig. 4) from r oot . The task of
reading all the data and broadcasting themisassigned tor oot . The aurrent PE then extracts the
datathat fall into its PE-private aea Inthe aray PE, The arrent PE is PE

icjc *

* Step 1: Vertical interpolation of the T, S u and v fields from the isopycnal model layersto the
analysis levels as explained in Sedion 3.2.
* Step 2: Calculation of the anomalies with respect to the exsemble mean over the atire

domain of the airrent PE, x¢' —<x‘>f J<ism

» Step 3: Calculation of y{, asin (9a). Prior to eat zonal application of the filter (12), a cdl

to pe_collect( ) isused to collect the state dements required to run the reaursive
filter from the PEslisted in column jc of PE. The same holds for eac meridional application
of (12), whererow ic of PE isnow involved.
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Step 4: ldentification of the PE-private data required by the other PEs.  First,
pe_col | ect ( ) isused to colled the longitudes and latitudes of each PE’s Suthwestern,
southeastern, northwestern and northeastern corner grid cells. Using this information, the
current PE cdculates for ead (i, j) pair which elements of d” fall inside the redangle, A,
which is the region from which PE;; will nead to collect data (Fig. 4). The indices of the
relevant elementsof d? are stored in the aray Ki; .

Step 5: Evaluation of the measurement functional. The arrent PE cdculates a
né x mmatrix, L> where nfis the number of observations contained in its own PE-private

region. The element at the intersedion of the pth row and ith column of L?is

L8, =LP (y, +(x)" ) =L°(x)"),

where LPisthe interpolation operator which maps its argument to the location of df)’, the pth
PE-private observation on the airrent PE (Sedion 3.8).

Step 6: Calculation of Z°, the innovations with resped to the exsemble mean for the arrent
PE’s private region. The innovation corresponding to df)’ IS

Step 7: Gathering of L? on ead PE using the information recorded in the ki arrays. The
function pe_collect( ) is called Npe times. Ead cal results in a different PE

completing the wlledion of its version of L°.

Step 8: Colledion of the innovations, z?, required by each PE. As for gathering L?,
pe_collect( ) is caled Npe times. Eadth PE passs to pe_collect( ) the
elements of its z? innovation vedor required by the other PEs. The PEs now have all the
information required to cdculate the analysis increments.

Step 9: Calculation of the representer amplitudes. First the local representer matrix,
R =L (L”)T, and its Hadamard product with the compadly supported correlation function,
C’+R%, ae computed. Then the m right hand sides of (9d) are cdculated
asz’ —L, +e,1<i<m, where € isthe random perturbation term of (6c). Finally, (9d) is
solved m times, yielding the b, vedors. Since the effedive rank of R? is m rather thanny

and as a precaition against R losing its positive definiteness due to round off errors, LU
decomposition with partial pivoting is used rather than Cholesky decomposition. If LU
decomposition fails, singular value decomposition (SVD) is used and nea-zero singular

values of S? areignored.
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* Step 10: Computation of the analysis increments. The alculations (9e-g) are made for ead
PE-private grid box. Calls to hal o( ) are used to fill the elements of x*-x'in the

current PE’s halo regions. It is more eonomical to obtain these elements in this manner than
through the goplication of (9e-g) to ead grid box situated within the halo regions.

* Step 11: Transformation of the T, S u and v increments from the analysis levels to averages
on the model layers. This dep is the reciprocal of step 1 Following this, the analysis
increments are alded gradually to ead ensemble member’s date vedor by means of the IAU
mechanism discussed in Sedion 3.7.

4 Discusson
4.1  Effed of parallel decomposition on analysis

The impad of performing a different local inversion on each processor (9d) rather than inverting
the global system matrix, S=C+R+W in (8b), is examined in this Sedion. So that the local and

global solutions can be mmpared, a single TAO temperature analysis is used as an example
because it involves sufficiently few data for (8b) to be solved on each PE without partitioning S
asin (9d).

The parallel algorithm relies on the assumption that (1) the analysis calculations can be
partitioned resulting in each procesor assimilating local data and that (2) the partitioning does
not have adeleterious effect on the analysis results. An alternative gproach when presented
with many data to assimilate simultaneously is to solve the global problem (6c) with an iterative
method. The NASA Data Assimilation Office’s Physical Space Statistical Analysis System
(Cohn et al. 1999 and the Naval Research Laboratory Variational Data Assmilation System
(Daley and Barker 2001 use a preconditioned conjugate gradient solver (PCGS) to solve a
system akin to (6¢). A similar algorithm has been implemented into the NSIPP multivariate data
assimilation system (MvVDAS). This iterative solver is faster than LU decomposition for

n, 20(10% . So far, the number, n?, of data processed on eat PE have been lessthan that.
Thus, LU decomposition or SVD has been used most of the time (Sedion 3.13).

Here, for illustrative purposes, a 25-member ensemble distributed aadoss 100 PEs is used. The
experiments of KRO1 involve a40-member ensemble and 256 PEs. There ae 642 temperature
measurements in this example. They correspond to January 1, 1997 Although the number of
observations does not necessitate distributing the analysis computations, the example illustrates
how the inversion would be distributed if there were too many data for ead PE to processthem
all at onetime, asisthe cae when TOPEX dtimeter data ae assimilated.
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Structure of error-covariance matrices in observation space for one TAO temperature anaysis

corresponding to January 1, 1997. (a) Global system matrix, S, without compact support. (b) Global compactly
supported S. (c-€) Example PE-local S matrices corresponding to PE 8 for which n, = 247, PE 28 (n, = 356)

and PE 86 (N, =160).
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Equatorial sedions through the temperature-field part of the aaysis increments (degrees C)
corresponding to the @ses shown in Fig.6. (8) Global inversion without compactly supported covariances. (b)

Global inversion with compact support. (¢) Distributed inversion with compact support.
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Figure 6 shows how imposing compact support to R impads the sparsenessof the global S. It
also illustrates how the sparsenessis exploited by distributing the analysis calculations in the
parallel algorithm. Figures 7 and 8 illustrate the respedive impacts on the asimilation
increments of using compadly supported badkground covariances and distributing the analysis
among PEs. Asiscommon, adiagonal W is assumed.

Figure 6a shows the global S, when the @ndition that it be compactly supported is not imposed
(LL +W in 6c). Figure 7a shows an equatorial sedion through the crresponding temperature
increment. The arresponding seasurfacetemperature (SST) increment is shown in Figure 8a.

When the badkground covariances are wmpadly supported, the global S (CeLL +W in 8b),
becmes garse & Figure 6b illustrates. The most obvious effed of the Hadamard product of C
and R on the assimilation increment is that the latter is tapered away from the Equator where no
measurements are available (Fig. 8b). The dfed of the Hadamard product on the vertical
structure of the temperature increment is not as dramatic (Fig. 7b) since the data come from
several depths between the surfaceand 500meters.

When the analysis is distributed, the clculation of the local S on eat PE (C?<L° (L")T +W? in
9d) amounts to sub-sampling the global compadly supported S of Figure 6b. On each PE, the
sub-sampling results in a local S which is less arse than the global S because it does not
contain covariances between remote locaions which are identically zero as a result of the
Hadamard product. Figures 6¢-e show local S matrices on threerandomly chosen PEs.

Comparing Figure 7c to Figure 7b or Figure 8c to Figure 8b shows that the analysis increments
obtained with the local analysis equations (9) are virtually identical to those obtained with (8),
even though the global inversion (8b) is bypassed. Indeed, the root mean square difference
between the Equatorial temperature increments of Figures 7b and 7c is 6.0x10°C. That

between the SST increments of Figures 8b and 8 is 1.0x10°C. Thus, the tremendous
computational savings asociated with substituting the local S for the global S occur with a
negligible impact on the quality of the analysis.

42  Timing

Table 1 lists the wall-clock time spent in each step of the asimilation algorithm and in the
ensemble integration in the cae of a one-month TAO temperature asimilation experiment
(TAOA: middle wlumn) and in that of a one-month asgmilation experiment with gridded
TOPEX-dtimeter data (TOPA: right column). The operation labeled “data processing and
distribution” refers to the root PE reading the observations and broadcasting them to the other
PEs. Eacd PE then determines which data fall within its PE-private region and superobs them
(Sedion 3.9). Theremaining, non PE-private data ae discarded.

The TAOA example involves approximately 600 dita per analysis. The TOPA example involves
about 10* data per analysis. Although the TOPEX data are processed daily in KRO1, they are
assimilated every five days in the TOPA run to fadlitate comparison to the TAOA run which is
made with a five-day assimilation interval. The times listed correspond to one five-day cycle and
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are averages over the lengths of the experiments. Asin KR01, 40 ensemble members distributed
aao0ss256 PEs are used.

In both TAOA and TOPA, a little more than 1000 seands are spent time stepping the ensemble
(error-covariance forecat). The four-second dfference between the two cases results from
differences in the time spent in disk access, which varies with the system load, and, to a lesser
extent, in the time spent communicating between PEs and synchronizing the computations. In
TAOA, the ensemble integration takes 72% of the time. In TOPA, it takes 62% of thetime. The
remainder of the time (TAOA: 395semnds, TOPA: 626 seaonds) is used to processthe data.

Table 1. Mean duration of each phase of the analysiscycle. Middle amlumn: TAO temperature assmilation (TAOA
intext). Right column: TOPEX atimeter data assmilation (TOPA in text).

Operation TAOA Wall-clock time (s) | TOPA Wall-clock time (s)
Five-day ensemble integration 1035 1039
Data processng and digtribution | 25 107
Step 1 5 5
Step 2 4 4
Step 3 19 17
Step 4 3 5
Step 5 12 93
Step 6 3 17
Step 7 14 19
Step 8 5 6
Step 9 4 37
Step 10 292 307
Step 11 9 9
Total 1430 1665

Steps 1-3 and 10 are independent of the number and nature of the data and thus take the same
amount of time in TAOA and TOPA. Mog of step 4 is gent communicaing, and the number
and length of the messages involved is the same in TAOA and TOPA. Therefore, the time spent
inthis gep changes little between the two cases.

The differences between the times gent in steps 5 and 6 are due to the number of data processed
being larger in TOPA. Yet, the @t of these steps is not diredly proportional to n - becaise the

L operator is more expensive in TAOA, since more lookups are involved per datum. Indeed, the
data assimilated in the TOPA example have been interpolated onto the model grid before
runtime. The st of mapping the model state to the observations is reduced as a resullt.

Although about 20 times more data are processd in TOPA than in TAOA, the ms of steps 7
and 8isroughy the same in TAOA and TOPA. The reason is that these steps consist mostly in
communicaions and the number of messages exchanged is the same in both cases. Only their

length changes. Step 9, on the other hand, involves the solution of (9d) which scales like (ng)°.

In TAOA, n, =600 while 0<ng <200. In TOPA, n, =10* and nf =10°. Thus, step 9 isthe
step with the most data dependent cost.
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A large fradion of the analysis time is gent in Step 10 (TAOA: 74%, TOPA: 49%), the
calculation of the analysis increments in each PE-private grid box. The reason for this is the
matrix-vector products of (9¢). When the cntribution of C, is removed from the mmpadly
supported correlation function used in (9d) and (%), i.e. when C,(r,) =1 for dl r,, the time

taken to complete Step 10 drops to 23 seconds in the TAOA example, i.e. by more than 90%.
The reason is that the p, vedors become independent of the analysis level. Thus, rather than K

matrix-vector products, asingle product is neaded to cdculate the analysis increment within each
grid cell (i, j). Nevertheless, the experience acamulated so far with the MVENKF has shown
that the computational savings asociated with setting C, =1 occur to the detriment of the filter’s

skill.

In summary, the time spent in one TOPA analysis is less than twice that spent in one TAOA
analysis, although many more data ae involved. The significant efficiency gain of TOPA over
TAOA is attributable to two fadors. First, the |, and | correlation scales used in TOPA are half
those used in TAOA. Thus, although n, is20times larger in TOPA than in TAOA, TOPA’s nJ

is not 20 times more than TAOA’s. Semnd, the load is nealy optimally balanced in TOPA
where the data cover the whole domain. To the @ntrary, most off-equeatorial PEs in TAOA are
idle during the analysis. The parallel algorithm is thus much more dficient for alarge number of
evenly distributed data.

In a serial algorithm, the st of step 9 in TOPA would be overwhelming urless the PCGS
algorithm were used to solve (6c¢) or (8b). Since the PCGS solver iterates using matrix-vedor

products of S with b, it scales like nj rather than like n3. In the parallel algorithm, a non-
iterative O(n3) solver can be used with ro significant penalty (Sedion 4.1).

For reference, when the TAO temperature data are asimilated using the UOI, the time spent in
one complete analysis cycle on 64 (vs. 256) PEsis 151 seconds, i.e. about 11% of the time taken
by the MVENnKF in TAOA. Of these, 61 seaonds are used to integrate the model for five days, 27
seonds are spent in preprocessing and distributing the data and 63 seaonds are taken by the
analysis.

4.3  Scaling

This Sedion discusses the two main current limitations of the parallel MVEnKF: (1) that it scales
poorly beyond 100PEs in the present machine/model configuration and (2) that the maximum
ensemble size dtainable is dictated by the memory of the individual PEs on a MPP with
distributed memory. A CRAY T3E-600 with 128VB RAM per PE is used here. Before
examining these two points, it is worth pointing out that they are of little long-term importance
Whether the implementation would be most efficient on the CRAY T3E on which it was
developed matters little becaise this machine will have been phased out before the MVENKF
becomes mature eough to replace the UOI in the wupled global forecating system. The
expected lifetime of a modern supercomputer is about two yeas. Therefore, a main objective of
the flexible, object-oriented message-passing software engineaing approad used to implement
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the MVENnKF and the other MVDAS components has been that they be alaptable and easily
portable to any parallel platform, small-scae parallel or MPP.

In Figure 93, it is shown how t,, the time spent per ensemble member in each five-day analysis
cycle in the TAOA run (Sedion 4.2), scdes withN, . (diamonds). The dashed curve labeled
“EnKF perfed” extrapolates the value of t, for 16 PEs in the range from 16 to 256 PEs,
asuming linear scaling. Acocording to Amdhal’s law, such scaling can rever be achieved. He
predicted that the speedup attainable in a parallel computing environment can not be linear as
there should always come a point where further task division credes more overhead than
computational speedup  Instead, the time used by an algorithm on p PES is given by
t, =t,(f +(1- )/ p), where t, isthetime used by the same algorithm on a serial machine and f

isthe fradion of the operations that must be performed sequentially.

The observed scaling is hard to compare with theory. First, becaise t, is unknown. Second,
because f depends on N,.. For example, the ratio of the size of the halo regions to that of the
PE-private regions increases with N.: the former is essentially dictated by the finite
differencing scheme while the latter deaeases when N increases. Also, the scaling numbers
shown involve different ensemble sizes for different values of N, (see Figure 9b). Still, t,,
deaeases by a mere 16% when N,.doubles from 128to 256 Reather, t,, deaeases by 45%
between 16 PEs and 32 PEs. This is indicative of saturation. The horizontal resolution of the
Pacific basin version of Poseidon used in these experiments is not high enough for the
distribution of its gate vedor over more than 100 PES to be optimal. In contrast, the global
ocean component of the NSIPP coupled model to which the MVENKF will be goplied next has
enough state variables to warrant its distribution over more than 100 PEs.. For reference, the

observed and perfect scaling curves are also shown for the UOI. In this case, the saturation
becomes apparent with 64 PEs at the aurrent model resolution.

In figure 9D, the largest ensemble size allowed by the individual-PE memory on NSIPP s current
computational platform, m. , isshown asafunction of N... For ead value of N, thetiming

number in Figure 9a @rresponds to m,,, ensemble members, so that memory is saturated.
Between 16 PEsand 128PEs, m,,,, increases approximately linearly from 6 to 36 On 256 PEs,
M, 1S 46. To increase m for given N, the following approadch can be used: partition the

ensemble so as, for example, to run 16 6-member sub-ensembles on 16 PEs ead, for atotal of
96 members on 256 PEs. This is easier said than done because it would require a
communicaion mechanism present in the Messge Passng Interface (MPI, Message Passing
Interface Forum 1994 but not currently supported by the GEMS library. Alternatively, runnng
the MVENKF on a platform with globally addressable memory would also allow larger ensemble
sizes. The s of the MVENKF would obviously be higher in both cases. As seen in KRO1, the
40-member ensembles used there achieve agood compromise between acairacy and keeping the
cost of the data asgmilation within acceptable limits (also seeSedion 3.3).
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Figure 9. (a) Time per ensemble member required to complete one five-day analysis cycle when TAO temperature
data are assmilated (t,, in text). The aurves labeled “perfed” correspond to a unattainable linea scaling. (b)

Largest ensemble size posshle asafunction of Npg (M, in text) on the CRAY T3E-600.

5 Summary

This article describes the MVENKF design and its parallel implementation for the Poseidon
OGCM. A domain decomposition whereby the memory of each PE contains that portion of
every ensemble member’s gate vedor which corresponds to the PE’s position on a 2D horizontal
lattice is used. The asimilation is parallelized through a localization of the forecast error-
covariance matrix. When data bemme available to assimilate, eady PE colleds from
neighboring PEs the innovations and measurement-functional elements acwording to the
localization strategy. The @variance functions are given compad suppat by means of a
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Hadamard product of the badground-error covariance matrix with an idealized locally supported
correlation function. In EnKF implementations involving low-resolution models, one has the
freedom to work with ensemble sizes on the order of hundreds or thousands. Rather, with the
state-vedor size of approximately two million variables considered here, memory, interprocessor
communicaions and operation count limit the ensemble size Here, 40 ensemble members are
used and the model domain is distributed over 256 CRAY T3E PEs.

Besides the details of the observing system implementation, the impad of the bad<ground-
covariance localizaion on the analysis increments, as well as timing and scaling isues, were
discussed. The validation of the MVEnKF in experiments involving TAO-temperature and
TOPEX dtimeter datais discussed in a companion article referred to herein as KRO1.

Some issles that must be addressed to improve the MVENKF are the deficiency of the system-
noise model which only acounts for forcing errors, the problem of ensemble initialization which
can be aldressed using a perturbation-breeding approadh, and the memory limitations inherent
with running the MVEnKF on a MPP with distributed memory. On a machine with globally
addressable memory, the memory-imposed constraints will be less &vere. Fortunately, the
modular, objed oriented approad used to implement the MVDAS is not tied to the CRAY T3E
architedure.
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